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ON GENERALIZED FORMULATION OF THE EQUILIBRIUM PROBLEM 
OF AN ELASTIC STRIP* 

L. P. LBBEDEV 

A "nonenergetic" formulation of the boundary value problems of staticsofanelastic 
strip based on the principle of admissible displacements , is studied. The fomula- 
tion makes possible, in particular, the study of problems concerning the strips cf 
infinite energy, while retaining the external form of the "energetic" formulation 
/l-33/, and Produces unique solvability of the problem under weaker restrictions 
imposed on the external loads. Such a formulation is alsopossible for other problems 
of the theory of elasticity. 

1. For an infinite elastic strip 51 of unit thickness ---00 < r&e 00, 0 <zt Q 1 with 
the lower side ;zi - 0 rigidly clamped, the principle of admissible displacements has the 
form 

where Ft denote the external loads, fl is the load acting on the top side I' of the strip, 
E tjk~ is the symmetric tensor of elastic constants. It is with respect to these constantsas 
functions of the coordinates xX, r, that the boundedness, the Lebesgue measurability and 
the uniform positive definiteness are assumed on the strip /3/ 

Ef/hlYk~Yf/ > ~Y~JY~J, m = const > 0, Ym = yzl 

The admissible displacements 6u must satisfy, together with the displacements u(ul, I+), the 
conditions 

%IW=bu*I*~=O (i-&2) (1.2) 

The principle of admissible displacements demands that the equation (1.1) holds for ali 
possible displacements 8u satisfying the condition of clamping of the strip.Intheenergetic 
formulation of the problem /3/ 8s are chosen from the class offunctionswith "finiteenergy". 
This imposes certain specified contraints on the external parameters of the problem, under 
which the generalized solvability of the problem in the "energetic" class of functions, is 
easily proved /3/. At the same timetheproblems in which the load does not decrease at infin- 

ity, and in particular where the load is periodic, are excluded from our discussion. In the 

present paper the class of possible displacements is narrowed , and this leads to the widening 
of the class of possible loads Pi and fi. We begin by discussing the mathematical apparatus 
used. 

2. The known results due to P. D. Lax /4/ concerning the construction of negativeSobolev 
spaces, admit an abstract generalization which shall be used below. The corresponding proofs 

remain almost unchanged, and the terminology is that of /4/. 
Let S be a reflexive, complex or real Banach space and Y a normed spaced. Further, 

let B(n. y) be a sesquilinear functional continuous in x E ?c, y E y , i.e. for any complex 
numbers air. Ba 

B (alxl f %x2, v) = a,B blr y) + a,B (% YL B (x, PlyI + 8&J = f&B (x, yd + &B 6. ~4 

I B (x, u) I < ml II x II It Y i! 
Here and henceforth mk are positive constants. 

Finally, let y(xJ~ Y exist for every element x1 E S and x (&)E x for every y2 E Y, 
such that 

B (x,, \'(x*)) > 0, B (x (!.2), Y:) > 0, x1 i 0, y? + 0 

According to the above statements every fixed element y E y defines a continuous linear 

functional on the space X:fv(x)= B(x,y) , and its norm is 

We introduce the following negative norm on the space Y: 
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Then II fu II = II v Ily- - We call the completion of the space T with respect to the negativenorm, 

space Y' 

Theorem 2.1. The set S,' of all linearboundedfunctionalson X can be placed in one- 
to-one correspondence with the completion 'f-in which the norm is preserved. 

Proof. The set F of all linear bounded functionals of the form f (x) = B (x. s). y E Y 
given on X is dense in S,'. Indeed, the set F is total on X, i.e. the fact that B(x,y) 

t- 0 for all yE Y implies that x=0. 
can be found in X,,"' (which is another, 

If F is not dense in X,', then a functional T PO 
strongly conjugated space) such that T (fu) = 0 for 

all fr EF. Therefore, by virtue of the reflexivity X = Xi,,", there exists an element 
t ,-X such that T(f)= f(t) for all jgXx,'. Therefore T (f!,) = fu (t) = C and t = 0 which 

is not possible. 
The correspondence between f, EF and ye T- preserves the norm and is one-to-one.Since 

F is dense in X,'. the theorem follows. 
Analyzing the proof of Theorem 2.1 we arrive at its alternative formulation in which the 

theorem becomes analogous to the Riesz theorem of representation of a continuous linear func- 
tional in a Hilbert space. 

Theorem 2.2. Every continous linear functional f(x)defined in the space X can be un- 
iquely represented in the form f(x) = B (x, y,), yt E Y-, and II f II = II Yt II. 

Theorem 2.3. Every continuous linear functionalg(y)on the space Y- can be uniquely re- 
presented in the form 

g (Y) = B (x,, s) 
with help of the element x1: E s. 

The proof of the corresponding Lax theorem /4/ is used, in this case, just as in the 
proof of Theorem 2.1, and is therefore omitted. Moreovdr Theorem 2.3 is not utilized directly. 
In what follows, the spaces and functionals are concretized. The space X(h) is a weight 
energetic space of vector functions u(u,,Ut) with the norm 

iiu&hh== J ~+&* (21) bl dzz 

where n satisfies the condition (1.2), the "weight" h(s,)> 
00 as lzll+cO. We also assume that 

0 is a smooth function and h(rJ-+ 

0 < m2 < h (E(q)) h-l (q) < ma (2.1) 

This shows that h(z,) canincreaseexponentiallyatinfinity. In (2.1) E(q) is the in- 
teger part of the number zr. We have the following lemma, which will be proved in Sect.4. 

Lemma 2 .I. The space X(Iz)is a Hilbert space. The following inequality holds for any 
vector function u (a,, u2) : 

(2.2) 

where the constant m @)is independent of u, while the constants r = p, y = 0 for P>2 
and r=2,Jy=2@-pp)-‘+E for l<p<2 where E > 0 and arbitrary. For k (zl) = 1 the 
corresponding lemma is given in /3/. 

A set of smooth vector functions vanishing when 11, 1 > R where Riis a constant associat- 
ed with each vector function, is a dense set in X(h). Denoting by Y (h)the space X(1)and in- 
troducing a bilinear functional 

&(n,v)= d cij (v)eij (u)dsr& 

we can confirm that all conditions for which Theorem 2.2 is proved, hold for the triad X (h), 
T (12). B, (11. Y) . We introduce the space T- (h) by c ompleting the set of vector functions v E 
y‘(h) on the norm 

I/ v IIT-(h) = ,,gp,,<, j oij (v) % (II) dxl dra 
. 

Lemma 2.2. Every continuous linear functional can be uniquely represented (according to 
Theorem 2.2) on the space X (h)in the form 
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u fz s (h) 

where v” E T- (h). The elements of the space r-(h) are measurable vector functions possessing 
first generalized derivatives, summable in the square over any finite part of the strip Q. 
Indeed, let X(x1) be an infinitely differentiable function with the following properties: 

x (4 = 1 when Izll<N and x(x1)= 0 when (q j>N+l where N is an arbitrary, fixed 
number. ,51 ,GN?or any element v E U-(h), XV also belongs to Y- (h) and coincides with v when 

The closure of the set of elements of the form x U E X(h) in the norm of X(h) forms a 
subspace in S(h) which we denote by S (h, N). The functional Bl(xv,u) on s(h,N) is con- 
tinuous with respect to the variable u and represents, by virtue of the Korn inequality /3/, 
a scalar product on s&N). Consequently xv E X(~,N) and the assertion made above,follows. 

3. Defini\;oz:,:. We call the vector function u0 _- Y- (h) satisfying the equation 
(1.1) for all _ XT , the generalized- solution of the problem of equilibriumofthe strip. 
Thus we have incorporated the principle of possible displacements in the basis of the defini- 
tion of a generalized solution. 

Theorem 3.1. Let condition (2.1) and 

where the relations connecting the constants r, y and p are given in the formulationof Lemma 
2.1, both hold. Then the problem of equilibrium of an elastic strip has a unique generalized 
solution described in Definition 3.1. 

Proof. The Hljlder inequality and Lemma 2.1 together lead to the following inequality: 

From this it follows that the linear functional appearing in the right-hand side of (1.1) is 
continuous with respect to the variable 6u in the space X(h). According to Lemma 2.2, it 
has a unique representation of the form 

From the form of (1.1) it follows that u0 is indeed a unique generalized solutionoftheprob- 
lem, and this completes the proof of the theorem. 

Notes. lo. Problems of equilibrium of a strip under different boundary conditions and 
of equilibrium of an elastic strip, can be tackled in exactly the ssme manner. 

2'. The method of constructing a generalized solution given above can also be used for 
the problems dealing with finite size regions. Depending on the choice of the space X, we 
can arrive at the concept of a solution belonging to one or another classof generalized func- 
tions with certain regularity properties. In particular, we can include the case of nonin- 
tegrable loads with various type singularities which disappear from the nenergetic" formula- 
tion of the problems. 

3'. The conditions of Theorem 3.1 admit the exponential growth of the loads at infinity. 

4'. The construction of a generalized solution given above can be used for general, 
elliptic, positive definite boundary value problems. 

4. Proof of Lemma 2.1. The fact that the space X(h) is a Hilbert space follows dir- 
ectly from the form of the norm of X(h) and the Korn inequality /3/. The proof of the estim- 
ate (2.2) is identical for the first two integrals appearing in the left-hand side of (2.2), 
therefore we shall prove only one. 

Wedividethestrip 0 intosquares Km of unit side. On &?Z<Z,<Vi-i. By virtue of the 
boundary conditions and the horn inequality /3/ the following inequality holds for the vector 
function and for all i<p<-: 

We multiply both sidesofthe above expression by h2(n) and carry out summation over n. This 

yields 
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2. (I 
cz 

hp(n)i”,pdr,di,jYc~,~~~S h2 (n) cijeij dz, drl , (g = 2p-1) (4.1) 

- n - n 

and the latter gives at once the estimate (2.2) for the first integral, With (2.1) taken into 
account and p= 2 . The estimate for the third integral of (2.2) is obtained in exactly the 
same manner. 

Let now i 0 p < 2. To obtain the estimate (2.2) it is sufficient to define the weight fun- 
ction p(zJ= (I+\ zlI)v so that the following inequality holds: 

or 

which is the same. Since the sequences (a,,) and (a_,,), 0% n < m are arbitrary and belong to 

the space P of sequences sunnnable to degreee B, it follows that the sequences (p&t)) must 
belong to the conjugate space ~'("-p). This is possible if the index y in the expression for 
the function p(~,)y>2(2-p)-1. Taking into account (2.1), we now obtain the estimate (2.2) 
for 1< p<2. 

Let now P > 2 By virtue of the Jensen inequality 

we obtain, taking into account (2.1), the inequality 

i ($; hp(n),u,“dlld,?)‘~(,~ ~hP(q)lu ,‘dt,dq)* 

?I=--+. n u 

which, combined with (4.1), completes the proof of the estimate (2.2). 

1. 

2. 

3. 

4. 
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